Autonomous Logistics Operations Family of Tools (ALOFT)

American Association of Geographers Annual Meeting 2018

P.I. Kevin M. Curtin, PhD

http://locationscience.ua.edu
kmcurtin@ua.edu
Partners and Contributors

- Important list of people who have contributed to this effort
 - Alec Barker
 - Mike Resig
 - Fred Woodaman
 - Jin Lee
 - Pat Guillen-Piazza
 - Pete Revay
 - Susan Lyon
The motivating mission of the Laboratory for Location Science is to integrate:

- The theory, methods, tools, and techniques of Spatial Analysis
 - GIS, GIScience, Spatial Statistics, Network Analysis
- The theory, methods, tools, and techniques of Operations Research
 - Optimization, Facility Location Modeling, Algorithmic and Heuristic solution procedures

How can this integration solve problems that neither discipline can solve in isolation?
Applied to Logistics Operations with UAVs

- Interest from the Office of Naval Research
 - Logistics Branch
 - Not interested in UAVs for munitions
 - Not interested in UAVs for surveillance
 - Maybe a little…
 - Are interested in UAVs for delivery
 - Movement of supplies, equipment and personnel
 - To support operations
 - Platform Mix
 - Evaluate performance of platforms
 - At the operations level
 - Where to invest?
Marine operations are changing
 - Logistics has to change with them

Move from:
 - “Storming the beach”
 - Building an “Iron Mountain”

To:
 - Distributed logistics
 - From a sea base – ships
 - Directly to units inland

Want to move everything:
 - A Humvee
 - A single packet of food or medicine
What is the range of Platforms?

Everything from:

- Small Quadcopters
 - Many models…possibly in swarms
 - Up to 50 pound lift capacity
- Medium lift – up to 600 pound capacity
 - Quad-, Hex-, Octo-copters
 - Single rotor lift – autogyro
 - Snowgoose
- Large Lift
 - Manned Aircraft Converted to Pilotless/Autonomous
 - K-Max – sling lift (6000 pounds)

Employed the AUVSI Database to be able to test many platforms
What can the Spatial Analysis/GIS side do?

- Real-world Scenario Preparation
 - Database management
 - Platforms
 - Facilities
 - Supplies (Stocks)
 - Demands
 - Scenario Visualization
- Computation of parameters necessary for the optimization process, e.g.
 - OD matrices
 - Network connectivity
- Means of Transfer to the OR side
The MCWL scenario is based on the United States Marine Corps (USMC) Installations and Logistics (I&L) Command’s Unmanned Logistics Systems (ULS) 2016 wargame

- The wargame was conducted at the unclassified level with a notional scenario set in 2025 and consisted of two vignette-based moves (Move I and Move II)

- This scenario is based on Move I, which focuses on logistics Classes I (food and water), III (fuel), and V (ammunition)
MCWL Scenario – Facilities

- This logistic supply system is a hub-and-spoke distribution model with the seabase serving as the initial hub.
- The operation is set in the littoral environment of the coast of West Africa.
- Manned and unmanned platforms are assigned to facilities for deliver goods.
- Mode is a bitwise operator that specifies what kind of platforms (sea, air, land, amphibious) can access a facility.

<table>
<thead>
<tr>
<th>Node</th>
<th>Name</th>
<th>Mode</th>
<th>X</th>
<th>Y</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LSA</td>
<td>12</td>
<td>-9.462485</td>
<td>5.322574</td>
<td>1 (S-ULS) 6 (M-ULS) 12 (MTVR)</td>
</tr>
<tr>
<td>2</td>
<td>BLT</td>
<td>12</td>
<td>-9.520849</td>
<td>5.413603</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Kilo Co</td>
<td>12</td>
<td>-9.334639</td>
<td>5.469172</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Lima Co</td>
<td>12</td>
<td>-9.60393</td>
<td>5.528302</td>
<td>2 (S-ULS)</td>
</tr>
<tr>
<td>5</td>
<td>Weapons Co</td>
<td>12</td>
<td>-9.527214</td>
<td>5.589981</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>India Co</td>
<td>12</td>
<td>-9.055495</td>
<td>5.135118</td>
<td>3 (S-ULS)</td>
</tr>
<tr>
<td>7</td>
<td>India Co 1st Plt</td>
<td>12</td>
<td>-9.026156</td>
<td>5.1661</td>
<td>–</td>
</tr>
<tr>
<td>8</td>
<td>Recon Team 1</td>
<td>12</td>
<td>-9.154586</td>
<td>5.394503</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>Recon Team 2</td>
<td>12</td>
<td>-9.685896</td>
<td>5.577157</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>LX(R)</td>
<td>8</td>
<td>-9.837746</td>
<td>4.976472</td>
<td>1 (L-ULS)</td>
</tr>
<tr>
<td>11</td>
<td>T-AKE</td>
<td>8</td>
<td>-9.730035</td>
<td>4.986402</td>
<td>1 (L-ULS)</td>
</tr>
<tr>
<td>12</td>
<td>LHD</td>
<td>10</td>
<td>-9.704956</td>
<td>4.923426</td>
<td>3 (MV-22B) 2 (CH-53K)</td>
</tr>
</tbody>
</table>
MCWL Scenario – Platforms

- Unmanned and manned logistics vehicles are assigned based on the MCWL Move 1 Scenario
- Specifications and characteristics of each platform are listed below

<table>
<thead>
<tr>
<th>Node</th>
<th>Name</th>
<th>Platform</th>
<th>Figure</th>
<th>Platform</th>
<th>Autonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LSA</td>
<td>1 (S–ULS) 6 (M–ULS) 12 (MTVR)</td>
<td></td>
<td>S–ULS</td>
<td>Unmanned</td>
</tr>
<tr>
<td>4</td>
<td>Lima Co</td>
<td>2 (S–ULS)</td>
<td></td>
<td>M–ULS</td>
<td>Unmanned</td>
</tr>
<tr>
<td>6</td>
<td>India Co</td>
<td>3 (S–ULS)</td>
<td></td>
<td>L–ULS</td>
<td>Unmanned</td>
</tr>
<tr>
<td>10</td>
<td>LX(R)</td>
<td>1 (L–ULS)</td>
<td></td>
<td>MV–22B</td>
<td>Manned</td>
</tr>
<tr>
<td>11</td>
<td>T–AKE</td>
<td>1 (L–ULS)</td>
<td></td>
<td>CH–53K</td>
<td>Manned</td>
</tr>
<tr>
<td>12</td>
<td>LHD</td>
<td>3 (MV–22B) 2 (CH–53K)</td>
<td></td>
<td>MTVR</td>
<td>Manned</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Speed (nm/hr)</th>
<th>Capacity (lbs)</th>
<th>Range (nm)</th>
<th>Acquisition Cost</th>
<th>Cost Per Hour</th>
<th>Cost Per Nautical Mile</th>
<th>Prob of Fail</th>
<th>Crew</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>S–ULS</td>
<td>32</td>
<td>50</td>
<td>13</td>
<td>90000</td>
<td>100</td>
<td>3</td>
<td>0.15</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>M–ULS</td>
<td>64</td>
<td>500</td>
<td>54</td>
<td>650000</td>
<td>300</td>
<td>5</td>
<td>0.1</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>L–ULS</td>
<td>230</td>
<td>5000</td>
<td>350</td>
<td>750000</td>
<td>1550</td>
<td>8</td>
<td>0.075</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>MV–22B</td>
<td>248</td>
<td>20000</td>
<td>428</td>
<td>72614579</td>
<td>11000</td>
<td>44</td>
<td>0.025</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>CH–53K</td>
<td>156</td>
<td>27000</td>
<td>110</td>
<td>92796000</td>
<td>10000</td>
<td>64</td>
<td>0.025</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>MTVR</td>
<td>52</td>
<td>30000</td>
<td>260</td>
<td>195271</td>
<td>4000</td>
<td>77</td>
<td>0.05</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
MCWL Scenario – Supplies and Demands

- Facilities in this scenario have either:
 - A stock of supplies to be delivered
 - A demand (need) for supplies
- The amounts of stocks and demands by facility are specified below:

<table>
<thead>
<tr>
<th>Node</th>
<th>Name</th>
<th>Stock</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LSA</td>
<td>Water: 10</td>
<td>Water: 55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel: 16</td>
<td>Fuel: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammo: 12</td>
<td>Ammo: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medicine: 2</td>
<td>Medicine: 0</td>
</tr>
<tr>
<td>2</td>
<td>BLT</td>
<td>-</td>
<td>Water: 63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Fuel: 205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Ammo: 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Medicine: 4</td>
</tr>
<tr>
<td>3</td>
<td>Kilo Co</td>
<td>-</td>
<td>Water: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Fuel: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Ammo: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Medicine: 1</td>
</tr>
<tr>
<td>4</td>
<td>Lima Co</td>
<td>-</td>
<td>Water: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Fuel: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Ammo: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Medicine: 1</td>
</tr>
<tr>
<td>5</td>
<td>Weapons Co</td>
<td>-</td>
<td>Water: 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Fuel: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Ammo: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Medicine: 1</td>
</tr>
<tr>
<td>6</td>
<td>India Co</td>
<td>-</td>
<td>Water: 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Fuel: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Ammo: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Medicine: 1</td>
</tr>
<tr>
<td>7</td>
<td>India Co 1st Plt</td>
<td>-</td>
<td>Water: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Fuel: 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Ammo: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Medicine: 1</td>
</tr>
<tr>
<td>8</td>
<td>Recon Team 1</td>
<td>-</td>
<td>Water: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Fuel: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Ammo: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Medicine: 1</td>
</tr>
<tr>
<td>9</td>
<td>Recon Team 2</td>
<td>-</td>
<td>Water: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Fuel: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Ammo: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>Medicine: 1</td>
</tr>
<tr>
<td>10</td>
<td>LX(R)</td>
<td>Water: 0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel: 2,000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammo: 100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medicine: 4</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>T-AKE</td>
<td>Water: 100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel: 2,000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammo: 100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medicine: 100</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>LHD</td>
<td>Water: 2,000</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel: 100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ammo: 100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medicine: 4</td>
<td>-</td>
</tr>
</tbody>
</table>

Facilities - Platforms - Supplies and Demands - Map - Optimal Solution
MCWL Overview – Map

Facility: Node 1 (LSA)
Demand:
- Water: 55
- Fuel: 2
- Ammo: 0
- Medicine: 0

Stock:
- Water: 10
- Fuel: 16
- Ammo: 12
- Medicine: 2

Facility: Node 1 (LSA)
- Demand:
 - Water: 55
 - Fuel: 2
 - Ammo: 0
 - Medicine: 0

Facilities:
- Risk Level:
 - High
 - Med
 - Low

Map:
- Node 1 (LSA)
- Node 2 (BLT)
- Node 3 (Kilo Co)
- Node 4 (Lima Co)
- Node 5 (Weapons Co)
- Node 6 (India Co)
- Node 7 (India Co 1st Plt)
- Node 8 (Recon Team 1)
- Node 9 (Recon Team 2)
- Node 10 (LXR)
- Node 11 (T-AKE)
- Node 12 (LHD)

Platforms:
- Recon Team 2
- Weapons Co
- Lima Co
- Kilo Co
- BLT
- Recon Team 1
- India Co 1st Plt
- India Co

Supplies and Demands:
- Node 6 (India Co)
What can the OR/Optimization Side Do?

- Formulate a model
 - That represents the multiple objectives of the logistics mission
 - Minimize prioritized unmet demand
 - Minimize risk to manned aircraft
 - Minimize operating costs
 - That models the constraints on:
 - Facilities
 - Platforms
 - Through space and time
- Provides the optimal
 - Deployment plan
 - Can be brought back to GIS

Obj 1. Minimize discounted, prioritized unmet demand
\[
\min z = \sum_t \text{discount}_t \sum_i \sum_n utility_{n,i} \text{SHORTE}_{n,i,t}
\]

Obj 2. Minimize crew risk
\[
\min z = \sum_{(t,t')} \text{timeArcs} \sum_{(n,n')} \text{nodeArcs} \sum_v \text{crew}_{n,n'} \text{nodeRisk}_{v,n,n',t,t'}
\]

Obj 3. Minimize discounted, operating costs
\[
\min z = \sum_{(t,t')} \text{timeArcs} \text{discount}_t \sum_{(n,n')} \text{nodeArcs} \sum_v \text{operatingCostPerDistanceUnit}_{v,n,n',t,t'}
\]
The Testbed Environment

- Set of tightly integrated tools
 - OTS GIS Functionality
 - Custom GIS Scripting
 - Linkage to LP Solution software
 - Gurobi via Python/PuLP
 - Customized Display
 - Integration with Simulation
In order to analyze platform mix we must change platform mix
- Solve over a range of mixes
- Compare performance to cost
- Pareto optimal boundaries

Example for MCWL
- 27 different platform mixes
- For S-, M-, and L-ULS either:
 - Keep the # of available platforms same as MCWL
 - Reduce the number of available platforms to zero
 - Double the # of platforms compared to MCWL

- ParetoPlot_MCWL1_Cargo_MultiObj_UDCLTD.html
- ParetoPlot_MCWL1_Cargo_MultiObj_UDCLTDscaled1.html
- ParetoPlot_MCWL1_Cargo_Sequential_UDCLTD.html
Changes/Additions to the Optimization Approach

- Are the constraints/objectives realistic
- Extending scenarios, Random scenarios
- Sensitivity of solutions
- Find the bounds of tractability
- Additional models where facility location changes but mix stays the same

Additions to the Platform Mix analysis

- Add statistical tests of performance to the Pareto Analysis

And a thousand more possibilities…

Questions?