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Abstract
The Traveling Salesman Problem is one of the most prominent problems in combinatorial optimization,
and is regularly employed in a wide variety of applications. The objective of this article is to demonstrate
the extent of sub-optimality produced by Traveling Salesman solution procedures implemented in the
context of Geographic Information Systems and to discuss the consequences that such solutions have for
practice. Toward that end, an analysis is made of Traveling Salesman solutions from implementations in
four Geographic Information System packages. These implementations are tested against the optimal
solution for a range of problem sizes. Computational results are presented in the context of a school bus
routing application. This analysis concludes that no Traveling Salesman implementation in GIS is likely to
find the optimal solution when problems exceed 10 stops. In contrast, optimal solutions can be generated
with desktop linear programming software for up to 25 cities. Moreover, one GIS implementation consist-
ently found solutions that were closer to optimal than its competitors. This research strongly suggests that
for applications with fewer than 25 stops, the use of an optimal solution procedure is advised, and that
GIS implementations can benefit from the integration of more robust optimization techniques.

1 Introduction

The Traveling Salesman Problem (TSP) is one of the most prominent problems in combinato-
rial optimization, and at the same time a quintessential applied spatial-analytic challenge. The
straightforward way in which the problem is defined in combination with its notorious diffi-
culty has stimulated many efforts to find efficient solution procedures (Hoffman and Padberg
2001). The TSP is a classic tour problem in which a hypothetical salesman must find the most
efficient sequence of destinations in a territory, stopping only once at each, while returning at
the end of the tour to the initial starting location. Due to the combinatorial complexity of the
TSP, approximate or heuristic solution procedures are frequently employed in practice.

Since so many problems can be structured as a TSP on a network, and since Geographic
Information Systems (GIS) have proven to be extremely efficient for modeling networks (Curtin
2007) and for transportation applications (Simkowitz 1988; Niemeier and Beard 1993; Miller
and Shaw 2001), heuristics for the TSP have been widely implemented in GIS. However, there
are many heuristics for the TSP with different characteristics, and – understandably – software
vendors do not specify the details of the heuristics that they have implemented. Given that heu-
ristic methods will sometimes give sub-optimal solutions are the norm, vendors may not even
mention that a heuristic is employed at all. When this is the case, casual GIS users may be com-
pletely unaware of the consequences of employing heuristic solution procedures, and the possi-
bility that they will misinterpret the nature of the solutions is significant.
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This research seeks to reveal the quality of the solutions provided by the heuristics
employed by various GIS software products, and to perform a comparative analysis of those
implementations. In seeking the answers to these research questions this article reflects an
attempt to provide a better understanding of the nature of TSP heuristics in GIS, and to allow
for more informed decision making regarding the selection of solution procedures for the TSP.
In order to do so, the following section briefly reviews the TSP itself (including a mathematical
formulation of the problem), solution procedures for the TSP, and the implementations of TSP
solution procedures within GIS. The remainder of the article is devoted to a test of GIS-TSP
implementations found in several popular GIS software packages. The data for this test is
based on a case study of the school bus routing needs for Kimball Elementary School, in Mes-
quite, TX as well as a larger street network surrounding this school for larger instances of the
problem. Computational results are presented and the research concludes with a discussion of
the performance of the varying TSP implementations, the consequences of using GIS for
solving the TSP, and the potential for improvements to GIS implementations.

2 Theoretical Background

The literature pertinent to this research exists in three related areas: the TSP itself, solution
procedures for the TSP, and implementations of the TSP in GIS software. Each of these areas is
reviewed in turn. However, the literature surrounding the TSP with its applications and solu-
tion procedures is enormous and this is not the appropriate forum for reviewing the entirety of
that literature. Rather, this review focuses on the TSP as a problem that can be solved in the
context of GIS.

2.1 The Traveling Salesman Problem

2.1.1 A brief history of the TSP

The TSP is, in one sense, the most pedestrian of optimization problems in that travelers solve
this problem for themselves every day. Anyone with more than a single stop from home to
work and home again (e.g. school, shopping, bank, restaurant, entertainment, etc.) must
decide which stops to visit, in which order, in such a way as to minimize their total cost,
however they choose to measure that cost. Frequently cost is measured by distance or time.
The TSP is pedestrian in another sense, in that a micro-geographic version of the problem
must be solved by anyone lacing their shoes (Punnen 2002). For those whose livelihoods
depend (at least in part) on efficiently conducting tours of locations with least cost – the
traveling salesmen themselves – the problem is of particular interest. In the early 1800s this
interest engendered a manual for salesmen providing suggested tours through Germany
(Schrijver 2005). Modern delivery systems must solve some version of this same problem on a
range of geographic scales.

Beyond the colloquial use of this problem, the TSP has its mathematical origins in the
Knight’s Tour problem (versions of which date to antiquity) formally discussed by L. Euler and
A.T. Vandermonde in the mid-1700s (Hoffman and Wolfe 1985). In the mid-1800s, the
problem was identified as an element of graph theory and was studied by the Irish mathemati-
cian, Sir William Rowan Hamilton. The problem of visiting every vertex in a graph only once
in a closed cycle (a Hamiltonian cycle) retains his name (Wilson 1996). At about the same
time, the problem was also identified by the mathematician Thomas Penyngton Kirkman
(Hoffman and Wolfe 1985).
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The more modern history of the TSP begins with the mathematician and economist Karl
Menger (Applegate et al. 1998), who recognized both the combinatorial complexity of the
problem, and that a nearest neighbor solution would not generally result in the optimal solution
to the problem (Gutin and Holloway 2004). It is believed that Menger introduced the problem
to Hassler Whitney at Harvard (Schrijver 2005), who a few years later, presented the problem at
Princeton University. It was at Princeton where A.W. Tucker and Merrill Flood discussed the
problem in the context of Flood’s New Jersey school-bus routing study (Flood 1956). Flood
went on to popularize the TSP at the RAND Corporation in Santa Monica, California in late
1940s and beyond (Hoffman and Wolfe 1985; Schrijver 2005).

Significant progress on the TSP was made in 1954 when Dantzig et al. (1954) intro-
duced a new method for solving the TSP, the cutting plane method, which became a proto-
type in integer linear programming. Since that time the TSP has been considered one of the
classic models in combinatorial optimization, and is used as a test case for virtually all
advancements in solution procedures. For further reading on the background of the TSP the
reader is directed to an annotated bibliography of TSP surveys, applications, and solution
procedures produced by Junger et al. (1997).

2.1.2 A mathematical formulation of the TSP

There are many mathematical formulations for variants of the TSP, employing a variety of
constraints that enforce the requirements of the problem (Gutin and Punnen 2002). Although
any of the common optimization formulations would suffice for this article, one has been
chosen (Vajda 1961) in order to demonstrate how such a formulation is specified, and for use
in the comparative analysis that follows. The following notation is used:

n = the number of stops to be visited; the number of nodes in the network
i, j, k = indices of stops that can take integer values from 1 to n
t = the time period, or step in the route between the stops
xijt = 1 if the edge of the network from i to j is used in step t of the route, 0 otherwise
dij = the distance or cost from stop i to stop j

A standard version of the problem requires starting from a given place, visiting subsequent
stops, and returning to the starting place. The optimal solution is one that minimizes the total
distance traveled. The objective function (Z) is then to minimize the sum of all costs (dis-
tances) of all of the selected elements of the tour:

Minimize Z d xij ijt
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The tour is subject to the following constraints.
Since the traveler cannot travel between more than one pair of stops at one time, for all

values of t, exactly one arc must be traversed, hence:
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1 for all (2)

For each stop, i, there is just one other stop which is being reached from it, at some time,
hence:
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For all stops, there is some other stop from which it is being reached, at some time, hence:
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When a stop is reached at time t, it must be left at time t + 1, in order to exclude disconnected
sub-tours that would otherwise meet all of the above constraints. These sub-tour elimination
constraints are formulated as:
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for all and (5)

In addition to the above constraints the decision variables must be integers taking only the
value 0 or 1:

x i j tijt = 0 1, for all , , and (6)

If n is the number of stops to be visited, there are (n-1)! possible routes. As the number of
stops increases the computational time one would need to evaluate all possible tours among
the stops quickly creates a problem that is difficult to solve. The TSP has been proven to be an
NP-complete combinatorial optimization problem (Bodin et al. 1983; Hoffman and Padberg
2001). Although specific large instances of the TSP have been solved with a combination of
robust solution procedures and a great deal of computing power, the general difficulty in deter-
mining optimal solutions to even modest sized instances of the TSP is the reason why heuristic
solution procedures are employed in GIS applications. The serious consequences of employing
those heuristics (as shown below) are a primary motivation for this article.

2.2 Solution Procedures for the TSP

Given the combinatorial complexity of the TSP and the ubiquitous nature of the problem
itself, efforts to develop solution procedures for the problem are ongoing. These efforts fall
broadly into two categories: (1) exact; and (2) approximate approaches.

2.2.1 Exact solution procedures

Exact approaches to solving the TSP guarantee optimal solutions, but – due to the combinato-
rial complexity of the problem – they can generally only be successfully used for modestly
sized problem instances. The most obvious exact solution procedure is to evaluate all possible
combinations of network elements that meet the constraints and to choose the set that per-
forms best. This method is termed complete enumeration and a program designed to perform
such an enumeration was developed for this research for comparative purposes. It was found
that the complete enumeration of all possible solutions to determine the optimal solution
could not solve the TSP for more than 10 cities (Table 2).

Exact linear programming solution procedures generally use some form of the Simplex
algorithm to find optimal solutions to relaxations of the problem that do not require integer
solutions. Since integrality is required in practice, a search procedure uses the non-integer
solution as an upper bound and proceeds to search through possible integer solutions to
define the lower bound. If the upper and lower bound can be made to coincide, optimality is
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achieved. The branch and bound search procedure is perhaps the most common method to
determine integer optimality (Balas and Guinard 1979; Evans and Minieka 1992; Skiena
2008). For this research, optimal solutions were determined through integer programming
with the mathematical formulation of the TSP given above. Optimal solutions to problems of
up to 25 cities could be determined with industry standard linear programming software on a
desktop computer (Table 2). Research is ongoing to determine ways of optimally solving
larger TSP instances (Applegate et al. 2003). For those who wish to use code designed specifi-
cally for the TSP, software is available that can solve significantly larger problems. However,
in the current user environment, there are many GIS users who are choosing to solve the TSP
within the GIS environment. It is likely that some – if not most – casual GIS users are
unaware that the TSP solutions generated by their software are heuristic and are therefore
susceptible to providing sub-optimal solutions. Moreover, no research to date has documented
the extent to which the solutions produced through heuristic, GIS-based, solution procedures
are sub-optimal.

2.2.2 Approximate solution procedures – heuristics

In this context heuristic solution procedures are approximate approaches that construct feasi-
ble solutions within a reasonable amount of computing time (Gendreau 2003). Although heu-
ristic approaches may find the optimal solution for particular problem instances – perhaps
even frequently – they cannot guarantee optimality. The two most important criteria when
evaluating heuristics are: (1) speed, meaning the total computational time, or in some cases the
number of iterations required to reach a solution; and (2) performance with respect to the
optimal solution. This latter criterion can be measured in several ways, but is frequently
expressed as a percentage over (or under for maximization problems) the optimal solution.
This can be complemented by a statement of how frequently the heuristic finds the optimal
solution, or with measures of the best case, worst case, and average performance of the heuris-
tic. A heuristic is considered “good” if the number of elementary computational steps is
bounded by a polynomial in the size of the problem (Lawler 2001).

Although there is a wide variety of heuristics that can be applied to the TSP, and while
new variants are regularly developed (Marinakis et al. 2005, 2008), they cannot all be
reviewed here. Instead, three heuristics are discussed: the Nearest Neighbor heuristic as an
example of a construction heuristic, a generic description of improvement heuristics, and the
TABU search method as a metaheuristic superimposed on an improvement heuristic.

The Nearest Neighbor heuristic is the simplest and most intuitive type of heuristic for
determining solutions to the TSP. This heuristic is considered to be “greedy” since it gradually
constructs a tour by repeatedly selecting the least-cost edge to cities not already in the tour,
and adding that edge to the tour until all cities are reached. The Nearest Neighbor heuristic is
extremely fast and easy to implement, but it does not provide particularly good solutions for
even modest sized problems.

Improvement heuristics start with an initial feasible solution and successively improve it
through a sequence of exchanges (Gutin and Holloway 2004). The initial solution for an
improvement heuristic may in fact be chosen by means of the Nearest Neighbor heuristic,
since its solution would not violate any of the problem’s constraints and since it very quickly
determines this feasible solution. Once an initial feasible solution is generated an improved
solution is sought by some transformation, generally an exchange of edges in the tour. The
most common ways to improve an initial tour generated by construction heuristics are the
two-optimal (2-opt) and three-optimal (3-opt) local searches. The 2-opt algorithm exchanges
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two edges within the tour and tests to see if the solution is improved. The 3-opt algorithm
works similarly with exchanges of three edges. The Lin-Kernighan heuristic uses a more
complex edge exchange procedure where the number k of the edges to be exchanged is vari-
able (Voudouris and Tsang 1999).

Improvement heuristics are universally plagued by local optima. That is, from either the
initial solution or from some subsequently improved solution it may be the case that no per-
mitted exchange can improve the solution, yet the global optimum has still not been reached.
If an improvement heuristic becomes trapped in such a local optimum, it will not be able to
continue searching for the global optimum unless additional intelligence is provided. Such
intelligence comes in the form of a metaheuristic. A metaheuristic is a strategy that guides
other heuristics in the search for improved solutions (Black 2009). Although there are many
metaheuristics (e.g. simulated annealing, genetic algorithms) this research is concerned prima-
rily with Tabu search.

Tabu Search is widely considered to be the best approach to solving large vehicle routing
problems (Osman 1993; Fiechter 1994; Knox 1994; Xu and Kelly 1996; Voudouris and Tsang
1999; Gamboa et al. 2006; Niizuma et al. 2006; Vogt et al. 2007; Gribkovskaia et al. 2008).
Specialized versions of Tabu heuristics are frequently designed to approach variant TSP and
other routing problems (Gendreau et al. 1996, 1999; Cordeau et al. 1997, 2001; Archetti et al.
2006; Wassan et al. 2008; Cote and Potvin 2009; Zachariadis et al. 2009). Tabu performs a
best improvement local search by selecting the best move in the neighborhood. However that
exchange can only be accepted if it is not excluded by the Tabu list which contains forbidden
solutions (Glover 1990). Tabus may sometimes prohibit attractive moves, even when there is
no danger of cycling. It is imperative therefore, to add some criteria that will allow the search
to override the Tabu list. These are called aspiration criteria. The simplest and most commonly
used aspiration criterion consists of allowing a move, if that move results in a solution having
an objective value better than that of the current best-known solution. Other criteria set the
length of time (number of iterations) a move can be relegated to the Tabu list (Tsubakitani and
Evans 1998). Given the evidence in the literature regarding Tabu search being the most com-
monly implemented TSP heuristic, and complemented by some statements from GIS vendors,
this research presumes that Tabu search heuristics dominate the implementations of TSP
solvers integrated into GIS.

2.3 The Implementation of the TSP in the Context of Geographic Information Systems

The ability of GIS to solve a wide range of spatially related problems for an extraordinary
number of applications has been well documented. Moreover, GIS is one of the primary tools
used to support the basic research undertaken in quantitative geography or geographic informa-
tion science (Goodchild 1992). GIS has been particularly useful in the modeling of networks
(Curtin 2008) and network-based phenomena (Miller and Shaw 2001). However, GIS are not
designed to solve combinatorially complex location problems optimally, thus any implementa-
tion must employ heuristic solution procedures (Church and Sorenson 1994). While comparative
analyses of heuristic solution procedures for the TSP have been made in the past (Golden et al.
1980), this research is concerned with the instantiation of those procedures in GIS. More specifi-
cally, it is common to distinguish between general-purpose GIS and GIS-T software designed spe-
cifically for transportation applications (Waters 1999; Slavin 2004); this research considers the
former. Early efforts at comparing routing heuristics examined “microcomputer-based vehicle
routing software” prior to the widespread availability of GIS (Golden et al. 1986). The need for
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testing location science heuristics as they are implemented in GIS has been clearly stated in the
literature (Church 2002).

There is no question that heuristic approaches to routing problems in the context of GIS
can provide substantial benefit to users who must quickly generate good (albeit not guaranteed
optimal) solutions (Weigel and Cao 1999), although it has been recognized those benefits have
historically come with the added costs associated with maintaining a GIS (Bodin 1990).
Moreover, it is recognized the GIS is becoming the platform of choice for an increasing
number of routing and logistics practitioners (Sutton and Visser 2004) including those who
wish to solve instances of the TSP (Fischer 2004). Unfortunately for these users, a review of
GIS documentation made for this research has found that GIS software vendors almost never
specify the details of the heuristics they employ, they occasionally do not admit to using heuris-
tics at all, and they sometimes imply – and occasionally state – that optimal solutions will be
determined with their software, even though this is demonstrably false.

For this research, four commercial off-the-shelf GIS software implementations of the TSP
were analyzed. The four packages, their solver names, and the known or presumed heuristics
used for the TSP implementations are given in Table 1.

Although these products can perform several types of network analyses, the focus here is
on the TSP solution. Each package contains many possible options for solving the TSP includ-
ing, but not limited to, specifying impedance values, allowing or disallowing U-turns, specify-
ing curb approach restrictions, identifying time windows for arrival or departure, adding
barriers, and specifying stop order. In the analysis below every effort was made to hold all
options constant across software platforms, and this was largely successful. The one exception
was ArcLogistics Route which is a standalone software product that requires the use of its
own proprietary network dataset. Due to this restriction network locations and distances
were not identical to those used by the other products, but were approximated as well as was
possible.

Of these four products only the documentation for ArcLogistics Route specifies that Tabu
search is used to find the best route. Conversely, the documentation for ArcView 3.2 and
ArcGIS 9.1 repeatedly specify that the TSP will be solved by finding the “best route” or the
“shortest route”, or even that the procedure will “optimize the solution”. While Esri and Inter-
graph maintain that the specifics of their implementations are proprietary (and that is certainly
reasonable), public GIS forum discussions have suggested that ArcView 3.2 and ArcGIS 9.1
use a Tabu Search heuristic (Sandhu 2001, 2006). Nothing is publicly known about the heuris-
tic implementation in Intergraph’s GeoMedia Transportation Manager. This research com-
pares the performance of these GIS implementations of the TSP against each other and against
the optimal solution when available.

Table 1 Software packages tested with solver names and heuristics for solving the TSP

Software Package Solver Name
Heuristic for TSP
Implementation

ArcView 3.2 Network Analyst 3.0 Tabu (presumed)
ArcGIS 9.1 Network Analyst 9.1 Tabu (presumed)
ArcLogistics Route Create Routes Tabu (known)
Intergraph GeoMedia Transportation Manager Tabu (presumed)
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3 Comparative Analysis and Computational Experience

3.1 Data Sources

A case study dataset was developed on which the heuristic and exact solution approaches were
tested. The case study was based on a school bus routing application, a classic application for
the TSP that has historically been modeled as a multiple traveling salesman problem (Angel
et al. 1972; Bowerman et al. 1995; Li and Fu 2002; Bektas and Elmastas 2007; Fugenschuh
2009) although the research in this test is restricted to single tours. An example of the data for
an instance of the problem with 16 stops is illustrated in Figure 1. The underlying network
dataset consists of a portion of the street centerline network for the City of Mesquite, TX.
Twenty-five problem instances were generated, with the number of stops ranging from four to
1,500. For small instances of the TSP (fewer than 10 stops) the tests were performed using
geocoded student location information and attendance school zones from Mesquite Independ-
ent School District (MISD). For larger instances of the problem the bus stops were chosen by
randomly selecting records from the table of attributes for network junctions. Figure 1 shows
the portion of the network dataset surrounding Kimball Elementary School.

3.2 Tests of Solution Procedures

The primary results of the comparative analysis are presented in Table 2. Two exact solution
procedures and five heuristic solution procedures were implemented in order to test the ability

Figure 1 Example problem instance (16 stops) and associated dataset in Mesquite, TX
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of GIS to solve instances of the TSP, and to make comparisons across software platforms. For
each of the seven solution procedures, the procedure was timed on each of the 25 problem
instances (Figure 2), and – if a solution could be generated by that method on that problem
instance – the objective function value (total traveled distance in feet) was captured.

First, a complete enumeration procedure was coded as a standalone Visual Basic 6.0
Windows application. The complete enumeration method was able to determine the optimal
solution for a maximum of 10 cities before the memory resources of the host computer were
exhausted. Second, the linear programming formulation given in Section 2.1.2 was used to
determine the optimal solution for 14 problem instances ranging from four to 25 cities. The
formulation itself was coded in the ILOG Optimization Programming Language Studio, the
data files were generated from the GIS dataset, and the optimal solution was determined with
CPLEX 8.1.0 running on a desktop computer with a 2.4 GHz XEON processor with 1 GB of
RAM. This same platform was used for the GIS-based heuristic TSP implementations.

As a base from which to begin evaluating heuristic GIS implementations, a nearest neigh-
bor solution procedure was implemented through the development of a standalone Visual
Basic 6.0 Windows application. This solution procedure could determine a feasible solution
for up to 800 stops in a reasonable amount of time (Figure 2). The four GIS implementations
were tested on the same problem instances as the exact solution procedures and the nearest
neighbor heuristic. Network Analyst 3.2, Network Analyst 9.1, and Transportation Manager

Figure 2 Exact and heuristic TSP solution times for all problem instances
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all found the optimal solution for each of the first eight problem instances with 10 cities or
less. Please note that due to the proprietary network required by ArcLogistics Route the objec-
tive function values occasionally differ slightly from those calculated for the other solution
procedures even when the same route has been found. Therefore when ArcLogistics route
found the optimal solution for small problems the objective function value appears to be less
than optimal (which is impossible). This is simply an artifact of the different networks, and in
each case this was checked to confirm that the same route was found, only with slightly differ-
ent lengths associated with the network elements.

3.3 Comparative Results

Table 2 shows the objective function values for each problem instance and TSP implementa-
tion combination. Table 2 compares the optimal solution to the heuristic solutions for those
problem instances where we have both values available. The Nearest Neighbor heuristic found
the optimal solution only twice out of the 23 problem instances that it could solve., and these
were two of the smallest problem instances with only four and six stops. In all other instances
the solution was suboptimal, and in several cases, far above optimal (since the sense of optimi-
zation is to minimize, all sub-optimal solutions are above optimal). In two cases, the solution
was 40% or more above optimal, and the average sub-optimal result was 26.4% greater than
optimal (Table 2).

While the poor performance of the nearest neighbor heuristic is not surprising given the
longstanding studies of this method in the literature, the performance of the GIS implementa-
tions is much more revealing. The heuristic GIS implementations were only able to determine
optimal solutions to problems with 10 or fewer stops, with one exception. This is essentially
the same performance (in terms of ability to reach optimality) that was achieved through the
complete enumeration procedure. There was a single problem instance with 25 stops that was
solved optimally by three of the four GIS implementations. Given that this route was shorter
than the heuristically derived routes for instances with between 12 and 20 stops, we believe
that a particularly fortuitous configuration of stops was generated through the random selec-
tion process, allowing the heuristics to tackle an “easy” problem. Although 175 problem
instance/solution procedure combinations were examined here, additional research is required
to determine how often such anomalies may occur.

For those problem instances with between 12 and 20 stops we are able to compare the
optimal solution generated by the linear programming procedure with the heuristic GIS
results. Although the GIS heuristics perform better than the nearest neighbor heuristic (which
is, in all likelihood, the starting solution for a version of the TABU heuristic) the objective
function values for these problem instances were from 14.4% to 19% suboptimal (Table 3).

Of course all of the heuristic solution procedures could determine solutions for far larger
problems, albeit with no presumption of optimality. For the instances where we do not have
optimal solutions, we can only examine across the heuristic implementations. In terms of
problem size, the Esri Network Analyst 3.2 and 9.1 implementations were able to solve the
largest instances (1,000 and 1,500 stops, respectively). The ArcLogistics Route software, which
is marketed as one that solves practical routing problems, consistently found solutions that were
longer than those solutions found by the other three heuristics. More specifically, for problems
with between 12 and 50 cities, ArcLogistics Route found the solutions longer than any other
heuristic. Moreover, ArcLogistics Route could not solve problems larger than 100 cities. For all
instances where Intergraph Transportation Manager could determine a solution, it always deter-
mined a solution that was equal to or better than (shorter than) any of the Esri products.
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4 Conclusions, Future Research, and Recommendations for GIS Implementations of
the TSP

The results of the comparative test are clear. It is unlikely that any of the heuristic GIS imple-
mentations will be able to determine the optimal solution for a TSP instance with more than
10 stops. In the context of solving even the most routine delivery or service problem instance
in an urban setting it is likely that dozens, if not hundreds, of stops must be made by a single
vehicle. Certainly more than 10 stops is the norm for many urban application areas, e.g. postal
delivery (Hollis et al. 1985), or garbage pickup (Bhargava and Tettelbach 1997).

The potential consequences of these results are equally clear. Most users who wish to solve
TSP instances cannot be expected to fully understand the nature of combinatorially complex
problems, and the difficulties in determining optimal solutions to those problems. These users
are simply given a task and asked to solve it. A review of the documentation of these methods in
the GIS software could easily give a naïve user the impression that they will obtain the optimal
solution. If they convey to their clients or superiors that they have determined an optimal solu-
tion to the problem, and then at some later time a solution that is up to 14% lower in cost is
determined, there may be serious consequences for those users. When transportation costs for
businesses and government agencies run into the millions of dollars per year, solutions that are
14% sub-optimal represent a major additional cost. Given the results above, it is clearly the
responsibility of the GIS research community to inform the user community which employs GIS
heuristic solutions about the potential consequences of using these methods. At a minimum
those users should know the following facts: (1) that solutions to problems of 10 stops or fewer
may be optimal, but that there is no guarantee of optimality and there is no way within the GIS
to test for optimality; (2) that their solutions to problem instances with greater than 10 stops are
very likely to be suboptimal, and those solutions could be suboptimal by 14% or more; and (3)
that they could find guaranteed optimal solutions to those problem instances of 25 stops or less
through the implementation of a linear programming solution procedure. It is only with this
information that users can make a reasoned judgment about the importance of an optimal solu-
tion versus the importance of convenience or speed in determining a solution.

Moreover, beyond the clear need to communicate the potential sub-optimality of results
to typical users, these results present several future research challenges to the applied spatial
analysis community. First, although four GIS implementations were available to be tested in

Table 3 Sub-optimality of GIS solutions

Route #

Number
of Stops
n

Nearest
Neighbor
(%)

Tabu
Search I
ArcView
(%)

Tabu
Search II
ArcGIS
(%)

Tabu
Search III
ArcLogistics
(%)

Unknown
Intergraph
(%)

9 12 40 22 22 23 22
10 15 14 12 12 15 12
11 16 21 14 15 16 14
12 18 28 15 15 17 15
13 20 29 10 9 24 9
Average when Sub-Optimal: 26.4 14.6 14.6 19 14.4
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this research, there are indeed other GIS implementations (e.g. TransCAD) and the authors
would welcome further tests to determine if other implementations can perform better than
those tested here. The GIS research community should encourage GIS software producers to
publish tests of their own implementations against optimal solutions to demonstrate the
ability of their heuristics to produce optimal or near-optimal solutions under different condi-
tions. We recognize that larger TSP instances could be solved optimally either with more
powerful hardware, or with specialized solution procedures. Doing so would allow for a
larger set of optimal solutions against which to compare GIS-heuristic solutions. Second, a
single TSP instance with 25 stops was solved optimally by three of the four GIS implemen-
tations while no other problem with more than 10 stops could be solved optimally. This
may be a reflection of a particularly tractable data configuration, but more research is
needed to determine if this is the case, and if so, what is the frequency of such data anoma-
lies. More importantly, if there is something unique about this particular data configuration
that permits optimal solution of larger problems, the potential to exploit that data structure
for solution procedures deserves attention. In order to test for the prevalence of such solu-
tions future experiments should utilize a large number of different network datasets, perhaps
randomly generated. Such experiments would also speak to the generalizability of the results
presented here. Finally, since network analysis in GIS is a very active applied research area,
it is critical that advances in TSP solution procedures be implemented in GIS software pack-
ages as quickly as possible.

In conclusion, there is no discredit in using heuristic solutions to solve large instances of
the TSP for which optimal solutions cannot be determined. When that is the case, the GIS
solution procedures are perfectly acceptable as long as the users are made aware that it is very
unlikely that the GIS will provide the optimal solution. If they know of this limitation they will
be in a position to provide appropriate caveats with their results. GIS were not originally
designed to solve combinatorially complex problems optimally, and these problems can
become intractable so quickly that even specialized software can often only solve moderately
sized problems optimally. It is hoped that the research presented here will encourage GIS pro-
viders to include performance results of their heuristics so that their users can know the per-
formance they can expect when solving the TSP. Given the results above, it appears there is
both a need and an opportunity to improve GIS through the integration of GIS with linear
programming software. Some recent attempts have been made to integrate GIS and integer
programming software in order to increase the number and type of problems that can be
solved (Jung et al. 2006; Curtin et al. 2010). The advances in cloud computing for geographic
applications suggest that the success of such integration is more likely. The ability to simulta-
neously take advantage of the strengths of two disciplines – geography and operations research
– holds promise as a research area for the immediate future.
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